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AbslncL We discuss the Parisi ovedap distribution function for various deterministic sys- 
tems with uncounlably many pure gmund slates. W show samples of trivial, munlably 
discrete. and mntinuouS distributions. 

In Parisi's proposed solution for the Sherrington-Kirkpatrick spin-glass model [l, 531 
there occurs an overlap distribution p(  q )  which is non-trivial in the sense that it has 

p ( q )  represents the presence of infinitely many pure extrema1 Gibbs or ground states. 
As the mathematical status of Parisi's theory is still poorly understood, it seems of 
interest to study its various aspects in simpler models. For instance, Fisher and Huse 
[4] have studied the behaviour of the overlap distribution and discussed its strong 
dependence on boundaly conditions in various examples with only two pure states. 
Their work was partly motivated by their conjecture that short-ranged spin glasses 
have only two pure states [5,6,7]. 

We present here some results from a complementary p i n t  of view and consider 
what might happen in deterministic systems with infinitely many pure states. We 
suspect that some spin-glass models do indeed have infinitely many ground states 
[S, 91, although we consider this matter unsettled at present. The scenario with many 
states was recently considered by Newman and Stein [lo]. In fact, our paper originated 
from discussions with C Newman. Despite somewhat different physical motivations, 
our conclusions support those of Fisher and Huse: the overlap distribution does not 
describe the number of states well. 

The reason for this conclusion differs between our examples and theirs. Whereas 
Fisher and Huse show that standard boundary conditions (free, 'periodic, antiperiodic) 
can either suppress some pure state (as happens for example in the random field king 
model) or give rise to a continuous overlap distribution due to floating defects (as 
happens for example in the nearest-neighbour ferromagnet with antiperiodic boundary 
conditions), in our examples we work with states which are mixtures of uncountably 
many pure states that are free of defects. Hence no pure state is suppressed, and 
floating defects do not occur. As we work directly with the infinite-volume measures, 
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we need not consider boundary conditions. Our systems are deterministic in the sense 
that their configurations are generated by deterministic rules: standard substitution 
rules producing Thue-Morse and Fibonacci sequences. Also, our configurations are 
ground state configurations of deterministic manslation-invariant interactions. 

More specifically, in our models at every site i of the one-dimensional lattice 
2 there is a spin variable ui which can attain the values hl. An infinite lattice 
configuration is an assignment of spin orientations to lattice sites, that is an element 
of R = {-l,+l)'.  We are concerned with non-periodic configurations which have 
nevertheless uniformly defined frequencies for all finite patterns. These are examples 
of the so-called similar hut incongruent pure phases discussed in [4]. More precisely, 
to find the frequency of a finite pattern in a given configuration we first count the 
number of times it appears in a segment of size 1 and centred at the origin of the 
lattice, divide it by 1,  and then take the limit 1 -+ ca. If the convergence is uniform 
with respect to the position of the segments then we say that the configuration has a 
uniformly defined frequency of this pattem. The closure of the orbit under translation 
of any such configuration supports exactly one ergodic translation-invariant measure 
on R, say p, which is uniquely specified by the frequencies of all finite patterns. 
Such systems are called strictly ergodic if every finite pattern that occurs in the 
configuration occurs with a uniformly defined frequency that is strictly larger than 
zero. The measures we consider are strictly ergodic. Strictly ergodic measures can 
be considered to be the typical ground states for translation-invariant interactions 
[ 11-14]. 

Let us denote by q x y  the overlap between two cdnfigurations X and Y in the 
support of p. It is defined by 

Then the Parisi overlap distribution p ( q )  is the distribution of qxu with respect to 
the product measure p @ p. 

Our fust result is a simple application of a well known result from ergodic theory. 
It concerns the so-called weakly mixing measures. Let us recall that a measure p is 
weakly mixing if p ( f T k ( " ) f )  - [ p ( f ) I 2  for all f square-integrable with respect to 
p, where T is a shift operator, and k( n) the sequence of natural numbers, possibly 
excluding a set of zao density (depending on f). This property is equivalent to T 
having a continuous spectrum [15]. 

Theorem 1. If p is weakly mixing then p ( q )  is a point distribution conckntrated on 
ip(u,,jjz. 

proof. If p is weakly mixing then p @ p is ergodic [U] and by the ergodic theorem 
0 

A specific weakly mixing example of a three-dimensional ferromagnetic Iskg 
model with uncountably many Gibhs stat= and a trivial overlap distribution has 
already been given in [NI. However, in that example all pure states are related hy a 
global symmetry of the system. This is not the case in the models considered here. 

Our next result answers a question of C Newman about the Thue-Morse system. 
'Ib define the The-Morse system we start by taking a sequence of all +1 spins. At 

( l / N ) ~ ~ l  ui(X)ui(Y) converges with probability one to 
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the first step we Rip every second spin. At the nth step we Rip all blocks of 2"-' 
spins within the predous (n - 1)st configuration from the site ( 2 k  + 1)2"-' + 1 to 
(2k + 2)2"-' for every k. A cluster point of this sequence of periodic configurations 
of period 2 2" is a non-periodic sequence called a Thue-Morse sequence [17-221. 
The closure of its orbit under translation supports exactly one translation-invariant 
measure pTM which is in fact strictly ergodic [17]. Thue-Morse sequences can also 
be obtained by iterating the following substitution rule: 1 -+ 1 - 1: -1 - -1 1. 
The Thue-Morse measure pTM has been shown to be the unique ground state for 
arbitraly rapidly decaying &spin interactions [ZO]. 

Theorem 2. The overlap distribution p ( q )  for pTM is a point measure concentrated 
on q = 0. 

Proofi L z ( p T M ) ,  the space of functions which are square-integrable with respect to 
pTM can be decomposed into the direct sum of the two spaces spanned by the odd 
and the even functions with respect to the spin-Rip operator ui -t -oi .  The shift 
operator acting on the space of odd functions has a singular continuous spectrum 
[17]. Therefore when you consider only odd observables, like ui, then pTM behaves 
as if it were weakly mixing and pTM @ pTM as if it were ergodic with respect to these 

c! 

Now, let X be any Thue-Morse sequence and let Y ( i )  = X ( i )  X(i + 1). The 
closure of the orbit of Y obviously supports exactly one ergodic translation-invariant 
measure and the resulting strictly ergodic system is called a Tbeplitz system [23,24]. 
Every Toeplitz sequence can be constructed in the following way. First choose a 
sublattice L ,  of period 2 and put a -1 on every site in L, .  Next, choose a sublattice 
L,  of period 4 that is disjunct from L ,  and put a +1 on every site in L,. In this 
way one continues: L j  is a sublattice of period 2J that is disjunct from L , ,  . . . , L j - ,  
and the spins in L j  are (-1)'. In the interpretation of [22] the Tbeplitz sequence 
describes the molecules of the Thue-Morse system. 

Theorem 3. The overlap distribution for the 'lbeplitz system p T  contains muntably 
many points. 

Rmfi We d l  fur one Toeplitz configuration Y and calculate its overlaps with all 
'Ibeplitz sequences grouped with respect to the constant overlap. First consider all 
'Ibeplitz configurations such that the minuses of the first sublattice are exactly off the 
first sublattice of Y. This gives rise to a point measure of mass 112 concentrated 
on q = -112 + 1/4 - 118 + ... = -113. Now consider all 'lbeplitz configurations 
such that minuses of the first sublattice are on the first sublattice of Y and the 
pluses of the second sublattice are off the second sublattice of Y. ?his gives us 
a point measure of mass 114 concentrated on q = 112 - 112 . 1/3 = 113. In 
the next step the first hvo sublattices are coincident and the third oiies miss each 
other, giving rise to a point measure with mass 118 and concentrated on q = 112 + 

~bseiva3ks aiid so the miii:Osioii fo!kiw as hi :he p i ~ f  of :he :heoiem I. 

114 - 114 . 113 2 / 3 .  Repeating th& p'"ced-"'e kfinite!y many rimes we gb@h 
p ( q )  = C~=P,o(1 /2n+')6(q-(3 .2n-2-  1) / (3"2n-2)) .  0 

Note that this construction resembles the 'ultrametric' structure that occurs in 
Parisi's theory [2]. 
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Our last example is the Fibonacci system. It too is strictly ergodic. We will show 
that it has a continuous part in its overlap distribution. A Fibonacci sequence can be 
obtained using the following substitution rules: 1 - -1, -1 -+ -1 1. 

Theorem 4. The overlap distribution of the Fibonacci system pF has a continuous 
part. 

Proof. We will use an equivalent construction of Fibonacci sequences by rotations 
T over the circle by an amount 2 n y  with -y = 2/(1 + &) being the golden ratio 
(see e.g. [=I). 'lb every angle Z T +  E [0 ,2rr)  there corresponds a Fibonacci sequence 
X in the following way. If T"4 is in the arc segment [0,2ny) then X ( n )  = 1, 
otherwise X(n) = -1. Now, because of the irrationality of y, T is ergodic with 
respect to the Lebesgue measure pL on the circle. Hence the overlap between 
sequences corresponding to 274, and 2n& depends only on a = 41 - +2. Namely, 
q ( a )  = pL(A) - pL(Ac), where A is the event where the two line segments that 
define the angle 2na are both in the same arc segment [ 0 , 2 n y )  or [ 2 n y , 2 n ) .  
Hence 

1 - 4 a  i f O < a < l - y  
q ( a ) =  1 - 4 ( 1 - 7 )  i f l - y < a < y  

1 -4(1 - a )  if7 < a < 1. 

0 

It is not known if there is a simple (c.g. finite-spin exponentially decaying) 
translation-invariant interaction with pF as its unique ground state, although by 
[13,14] there are infinite-spin interactions for which pF is the unique ground state. 
Let us remark here that such a deterministic interaction has a continuous part in its 
overlap distribution, a property usually attributed to systems with random interactions 
like spin glasses. 

Let us mention that *erlaps have been studied in the literature on substitution 
dynamical systems [23,2b, 271 under the name 'coincidence density'. However, not 
much seems to be known about their distributions. The overlap between two finite 
sequences of f l  is a linear function of their Hamming distance. 

We also remark that the Edwards-Anderson parameter as for example studied 
in (281 measures the maximal overlap, and hence would be 1 in our examples. This 
shows that there can be a big difference between a maximal and a typical overlap. 

Concluding, we have shown that in various examples where one a n  compute the 
overlap distribution for systems with infinitely many states, various 'ypes of distri- 
butions occur. Thus overlap distributions do not provide a good description of the 
number of pure phases of the system. The fact that we worked at T = 0 should 
not matter too much as similar non-periodic long-range order and infinitely many 
pure Gibbs states can occur at positive temperatures (21,291. This conclusion fully 
supports what Fisher and Huse found in their examples with finitely many states and 
suggests that for spin-glass models the overlap distribution might not be a very useful 
quantity. 

We thank Michel Dekking, Chuck Newman, and Marinus Winnink for discussions. 
The research of A C D van Enter has been made possible by a fellowship of the 

{ 
It follows that d q )  = (27 - 1)6(q - (1 - 4 ( 1 -  7)) + ~ 1 ~ l - 4 ~ l - 7 1 , 1 1 ( q ) d q .  



Letter to the Editor L1137 

Royal Netherlands Academy of Arts and Sciences and that of J Miekisz by Bourse 
de recherche UCL/FDS. 

References 

[l] Parisi G 1983 Phys. Rot Lm M 1946 
[Z] Mezard M, Parisi G, and Virasoro hi A 1987 Spin G h s  7hemy d Beyond (Singapore: World 

[3] Shemnglon D and Kirkpatrick S 1975 Phys. Ra! kt 35 1792 
[4] Huse D A and Fisher D S 1987 I Phys. R' Moth Gm. 20 L997 
[SI Fisher D S and Huse D A 1987 I Phys. R' M a h  Gm. 20 LlwS 
[6] Fisher D S and Huse D A 1986 Phys Rev Len 56 1601 
171 Fisher D S and Huse D A 1988 Phys Rm B 30 386 
[S] &vier A and Fr6hlich J 1986 L Swt Phy. 44 347 
[9] van  Enter A C D 1990 I Stat Phy. 60 275 

[lo] "man C M and Stein D L 1992 Multiple sales and lhermodynamic limils in short-ranged king 
spin-glass models Phys Rev. B in press 

[l l]  Aubry S 1983 I Physiquc 44 147 
[12] Radin C 1986 I Stot Phys 4) 707 
[U] Aubq S 1989 I Physique COU 50 97 
[14] Radin C 1991 h. Moth Phy. 3 I U  
[IS] Wallem P 1982 haoductim w E r p d i  7 k h ~ o r y  (Berlin: Springer) 
[16] Migkisz J 1989 I Scat Phy. 55 351 
i 

[17] Kcane M 1968 Z Wahrs m Geb. 10 335 
[18] Aubry S 1989 Wakly periodic st111c1ures with a singular continuous specmm Rx. MTO Advanced 

Resen& Workshop m Common Ploblcm in pInrinysros Liquid C?ystoh, md k c m w a t e  
b l n t o r s  (Prmcm, Greece, Seprembn 1989) ed J I lbledano 

Scientific) 

[19] Luck J M 1989 Phys. Rn! B 39 5834 
[ZO] Gardner C, Miqkisz J, &din C, and van Enter A C D 1989 I Phys A: Math Gen 2'2 L1019 
[21] van Enter A C D and Miqkisz J 1990 Commun Math Phys W 647 
[22] van Enter A C D and Mi5kisz J 1992 1 SroL Phys. 66 1147 
[23] Dekkiing F M 1980 Substitutions lhhcrir Nijmegen, and private mmmunimtion 
[24] Jacob K and Keane M 1969 Z W h .  YLM. Geb. U 123 
[U] SchrMer M 1991 Frocroh, Cham, power Lms (New York: Freeman) p M8 
[26] Michel P 1987 Z Woks. m Geb. 42 XIS 
[27] Queff6l.x M 1987 Subsrimtion Dynomkol $st- (Le" Notcs in Mathmatics 1294) (Fkrlin: 

[ a ]  van Enter A C D and Griffiths R B 1983 Commun Moth Phy. 91 319 
1291 Israel R B private mmmunication 

Springer) 


